Siegerehrung Matheolympiade

Siegerehrung der Mathematik-Olympiade (Regionalrunde)

Am 10.11.2016 fand bei uns am Gymnasium Schwertstraße die Regionalrunde der 56. Mathematikolympiade für Solingen statt. 117 Schülerinnen und Schüler aus den Jahrgangsstufen 5 bis Q2/13 wurden zu dieser zweiten Runde der Mathematik-Olympiade eingeladen, nachdem sie an ihren Schulen die Aufgaben der ersten Runde erfolgreich gelöst hatten.

An der ersten Runde hatten an den sieben in Solingen beteiligten Schulen (Alexander Coppel Gesamtschule, Friedrich-Albert-Lange-Schule, Geschwister-Scholl-Gesamtschule, Gymnasium August-Dicke-Schule, Gymnasium Schwertstraße, Gymnasium Vogelsang, Humboldt-Gymnasium) insgesamt 278 Schülerinnen und Schüler teilgenommen.

Schülerinnen und Schüler, die sich den Herausforderungen der zweiten Runde erfolgreich gestellt haben, wurden im Rahmen der Siegerehrung am Donnerstag, den 24.11.2016 für ihre Leistungen in der zweiten Runde in besonderer Weise ausgezeichnet: Die Preisträger erhielten neben Urkunden auch Strategiespiele. Die 350 erfolgreichsten Schülerinnen und Schüler aller Regionalrunden in NRW werden zum Landeswettbewerb in Steinhagen, der dritten Runde der Mathematik-Olympiade, eingeladen. Für die Region Solingen stehen vier Plätze zur Verfügung. Dieses Jahr gehen für uns Franziska Debes (JS7), Leonie Suffenplan (JS 6), Maximilian Rohe (JS9) und Charlotte Ullrich (JS5) ins Rennen.

Alle Preisträger haben eine Einladung zu unserem Solinger Mathematikwochenende erhalten, das vom 27.01. bis zum 29.01.207 im Schullandheim Klefhaus stattfindet: Eine gelungene Verbindung von Spaß, Spiel und der Erforschung mathematischer Problemstellungen. Hier sind noch einige wenige Plätze frei.

Bei Interesse wendet euch an Frau Breidenbach. Für Interessierte an den Aufgaben der Mathematikolympiade hier der Link zu den Wettbewerbsaufgaben: http://www.mathematik-olympiaden.de

Artikel: S. Breidenbach

Bundeswettbewerb Mathematik - ein Erfahrugsbericht von Philipp Nguyen (Q2)

Bei einem solchen bundesweiten Mathematik-Wettbewerb machen nur die besten Schüler in ganz Deutschland mit. Deshalb ist auch klar, dass die Aufgaben sehr schwierig sind: Es kommen Themen vor, die nicht in der Schule behandelt werden, wie Zahlentheorie und Kombinatorik. Diese habe ich mir dann selbstständig erarbeitet, um mit solchen Problemen vertraut zu werden. Dabei musste ich viel nachlesen und recherchieren.

Philipp Nguyen
Philipp Nguyen (Q2)

In den ersten beiden Runden waren die Aufgaben als Hausarbeit zu bearbeiten und einzuschicken. Bei diesen Aufgaben beschäftigt man sich sehr intensiv mit Mathematik; es sind keine Aufgaben, die schnell gelöst sind. Ich habe viel Zeit benötigt, um sie zu lösen, wobei sicherlich die vollständige Dokumentation am wichtigsten ist. Außerdem musste ich mich an solche Aufgabentypen gewöhnen, da ganz andere Lösungen und Lösungswege als in der Schule oder in kleineren Wettbewerben verlangt werden. Um das zu tun, bearbeitet man am besten alte Aufgabe. Durch die Lösungsvorschläge lernt man, die Lösungen erwartungsgerecht zu finden.

Diese anspruchsvollen Probleme sind sehr lehrreich, sodass ich meine Problemlösefähigkeit  verbessern und meine Stärken und Schwächen feststellen konnte. Die Bewertungen durch die Korrektoren sind ziemlich streng, aber so weiß ich, wie ich mich in Zukunft verbessern kann. Auch wenn diese lange Wettbewerbszeit sehr arbeitsreich war, freue ich mich, dass ich zu den Preisträgern der 2. Runde gehöre und viel dazugelernt habe. Im nächsten Jahr werde ich auf jeden Fall ein weiteres Mal teilnehmen.

Artikel: Philipp Nguyen